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Abstract
Second-order necessary optimality conditions for nonlinear conic programming problems
that depend on a single Lagrange multiplier are usually built under nondegeneracy and strict
complementarity. In this paper we establish a condition of such type for two classes of
nonlinear conic problems, namely semidefinite and second-order cone programming, assum-
ing Robinson’s constraint qualification and a weak constant rank-type property which are,
together, strictly weaker than nondegeneracy. Our approach is done via a penalty-based
strategy, which is aimed at providing strong global convergence results for first- and second-
order algorithms. Since we are not assuming strict complementarity, the critical cone does
not reduce to a subspace, thus, the second-order condition we arrive at is defined in terms
of the lineality space of the critical cone. In the case of nonlinear programming, this condi-
tion reduces to the standard second-order condition widely used as second-order stationarity
measure in the algorithmic practice.

Keywords Optimality conditions · Second-order conditions · Weak constant rank ·
Semidefinite programming · Second-order cone programming

Mathematics Subject Classification (2010) 90C46 · 90C30 · 90C26 · 90C22

Ellen H. Fukuda, Gabriel Haeser, and Leonardo M. Mito contributed equally to this work.

B Leonardo M. Mito
leokoto@ime.usp.br

Ellen H. Fukuda
ellen@i.kyoto-u.ac.jp

Gabriel Haeser
ghaeser@ime.usp.br

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan

2 Department of Applied Mathematics, University of São Paulo, São Paulo, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-023-00676-1&domain=pdf


1 Introduction

Consider the following nonlinear conic programming (NCP) problem in standard form:

Minimize
x∈Rn

f (x),

subject to g(x) ∈ K,

h(x) = 0,

(NCP)

where f : Rn → R, g : Rn → E and h : Rn → R
p are twice continuously differentiable

functions, E is a finite-dimensional linear space equipped with an inner product 〈·, ·〉 and the
norm || · || induced by it, and K ⊆ E is a closed convex cone that is assumed to be self-dual,
which means K = K∗ .= {w ∈ E : ∀y ∈ K, 〈w, y〉 � 0}.

We are primarily interested in second-order necessary optimality conditions for two well-
established particular cases of (NCP):

• Nonlinear second-order cone programming (NSOCP), which is obtained when E = R
m

and K is the so-called (Lorentz) second-order cone, defined as Lm .= {(w0, w̄) ∈ R ×
R
m−1 : w0 � ||w̄||2} when m > 1 and L

1 .= {w ∈ R : w � 0}, or the Cartesian product
of r second-order cones in Rmi , with i ∈ {1, . . . , r} and m1 + · · · + mr = m;

• Nonlinear semidefinite programming (NSDP), which is obtained when E = S
m is the

space of all m × m real symmetric matrices and K is the cone Sm+
.= {W ∈ S

m : ∀d ∈
R
m, d	Wd � 0} of all positive semidefinite matrices, or a Cartesian product in the form

K = S
mi+ × · · · × S

mr+ , with m1 + · · · + mr = m.

Both fields have grown independently and accumulated a large set of applications over the
years, for example, in robust control [33, 34], passive reduced-ordermodelling [37], structural
optimization [50, 55], the sphere covering problem [24], and others (see [19, 56, 70] for a vast
collection of examples). In conjunction, several algorithms have been developed for them,
such as interior-point methods [23, 48, 71], sequential quadratic programming methods [52,
53], Newton-type methods [39, 51], and augmented Lagrangian methods [4, 15, 73], to
name a few (see Yamashita and Yabe [72] for more details). Consequently, some theoretical
aspects of NSOCP and NSDP, such as optimality conditions and regularity, have gained
much relevance in the community as well. In particular, necessary optimality conditions are
especially useful for giving theoretical global convergence support for iterative algorithms,
in the sense that every feasible limit point of a given algorithm can be proven to satisfy
some necessary optimality condition under a set of hypotheses. In fact, the reliability of
an algorithm is deeply related with the strength of the optimality condition that supports
its global convergence theory. From this point of view, second-order necessary optimality
conditions improve the first-order ones by considering the curvature of the problem data over
the set of directions where first-order information has little meaning, which is usually called
cone of critical directions (or critical cone). Note that this kind of convergence theory is
different from what is usually done for convex optimization problems, where second-order
sufficient conditions are used as convergence hypotheses. In the nonconvex case, the latter
results in a local convergence analysis. Since the results of this paper are meant to be used
in the aid of global convergence, we focus on necessary optimality conditions.

It is worth mentioning that second-order analysis in non-polyhedral conic contexts, such
as NSOCP and NSDP, is considerably more intricate than in polyhedral contexts, such as
in nonlinear programming (NLP). This is justified by the fact that the curvature of K must
be taken into account, besides the curvature of the functions defining the problem. The ini-
tial efforts to characterize this curvature were done by Kawasaki [54], whose results were
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generalized and refined by Cominetti [31], and later completed by Bonnans, Cominetti, and
Shapiro [27] with the notion of second-order regularity. Then, Shapiro [67] obtained a spe-
cialized statement for it in the context of NSDP, that was later re-discovered by Forsgren [36],
Jarre [49], and Lourenço, Fukuda, and Fukushima [57], using distinct nontrivial techniques
that make each proof interesting on its own. For NSOCP, second-order necessary optimal-
ity conditions were first characterized by Bonnans and Ramírez [28], and later studied by
Fukuda and Fukushima [38] who also presented sufficient conditions. In recent years, sig-
nificant advances were obtained were obtained for very general classes of problems that
have NSOCP and NSDP among their particular cases; see, for instance, the papers of Chieu
et al. [30] and Mohammadi, Mordukhovich, and Sarabi [58], both working under very weak
assumptions, but while the former uses the classical notion of cone reducibility introduced
by [27], the latter employs a new andmore general concept called parabolic regularitywhich
allows obtaining second-order conditions by directly differentiating the indicator function
in a particular sense instead of reducing the problem to remove its curvature at the point
of interest. Thus, it is possible to say that the motivation for studying alternative ways of
deriving second-order conditions for conic problems, in particular NSDP and NSOCP, has
gone far beyond practical usage, but nevertheless we believe practice should not be ignored.

With this in mind, some useful tools for proving new first- and second-order optimal-
ity conditions for optimization problems, which are deeply connected to the algorithmic
approach, are the so-called sequential optimality conditions. They were introduced in NLP,
and later extended to NSOCP and NSDP, as KKT variants designed for building convergence
theory of iterative algorithms (for details, we refer to the work of Andreani et al. [4, 6, 7, 15,
17]) and they gained some attention for being able to sharpen most convergence results for
them in a general and unified manner (see, for instance, [14, Section 5.2]). Also, a second-
order sequential condition has recently appeared in the work of Andreani et al. [13] for NLP,
which not only provided an ideal way of incorporating second-order information in numer-
ical methods, but also an intuitive strategy for building second-order analysis under weaker
hypotheses than the traditional linear independence constraint qualification (LICQ). These
improvements were obtained by considering a somewhat “weak” second-order necessary
optimality condition in the sense that only the lineality space of the critical cone is taken into
account in their results. However, as it is well-known in NLP, this “weak” condition is the
most suitable second-order condition for global convergence analysis of algorithms, since
the stronger conditions that deal with the whole critical cone are not guaranteed to be fulfilled
at the convergence points of a large class of algorithms, such as barrier-type methods [41]
and augmented Lagrangian-type methods [18], even under very strong hypotheses. Besides,
checking the validity of the “strong” second-order condition is an NP-hard class problem,
whereas checking the “weak” condition is of polynomial class. Nevertheless, as far as we
know, the latter condition has never received due attention in nonconvex conic contexts other
than NLP.

Inspired by [13], we prove that every local minimizer satisfies the weaker version of the
second-order necessary condition, forNSOCP andNSDP, but underweaker assumptions than
all previous related works. In fact, the meaning of our results lies in the fact we assume nei-
ther nondegeneracy nor strict complementarity, since under these hypotheses the “weak” and
“strong” second-order conditions are equivalent. Our approach is based on sequential condi-
tions, which suggests that our results may be useful for proving convergence of algorithms to
second-order stationary points of NSOCP and NSDP problems. We stress that even though
NSOCP can be represented in terms of NSDP, it is interesting to discriminate them since
the numerical methods designed to solve each problem might have different performances
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in practice [1]. Also, it is not straightforward to derive second-order results for NSOCP only
based on the NSDP results.

This paper is structured as follows: we begin by reviewing some classical results on first-
and second-order optimality conditions for (NCP) and its particular cases with some degree
of details, in Section 2. Then, we present our second-order analysis for NSOCP in Section 3,
and for NSDP in Section 4. At last, in Section 5 we give some final considerations about this
paper and related works.

2 Technical Background

In this section, we introduce our notation and present some results from the literature that
are directly related to ours. We also review in details some classical results on first- and
second-order optimality conditions for NSOCP and NSDP.

We consider the standard inner product in R
n , given by 〈a, b〉 .= ∑n

i=1 aibi , and the
Euclidean norm, given by ||a||2 .= √〈a, a〉, for everya, b ∈ R

n . The terms int(K), bd(K), and
bd+(K) stand for the interior, boundary, and boundary excluding the origin ofK, respectively.
Also, for any closed convex cone C , lin(C)

.= C ∩ (−C) denotes its lineality space, which
is the largest subspace contained in C .

For a given finite indexed set {ai : i ∈ {1, . . . , k}} ⊂ R, we denote the array that has ai
in its i-th position by [ai ]i∈{1,...,k} ∈ R

k and, analogously, the matrix whose entries are the
elements of {bi j : i, j ∈ {1, . . . , k}} ⊂ R is denoted by [bi j ]i, j∈{1,...,k} ∈ R

k×k . The identity
matrix of Rn×n is denoted by In . The gradient and the Hessian of a function f : Rn → R at
an arbitrary point x ∈ R

n are represented by ∇ f (x) and ∇2 f (x), respectively, and the first
derivative of g : Rn → E at x is the linear mapping Dg(x)[·] : Rn → E defined by the action

Dg(x)[h] .=
n∑

i=1

∂i g(x)hi

for every h ∈ R
n , where ∂i g(x) ∈ E is the partial derivative of g in the i-th variable, at x . In

particular, if E = R
m then Dg(x) is exactly the Jacobian matrix of g at x , in the canonical

basis of Rm ; for instance, in this case the i-th row of Dg(x) is given by the transpose of
∇gi (x), which is denoted by ∇gi (x)	, where i ∈ {1, . . . ,m}. The adjoint of Dg(x) is the
linear mapping Dg(x)∗[·] : E → R

n such that 〈Dg(x)[h], w〉 = 〈h, Dg(x)∗[w]〉 holds for
every h ∈ R

n and every w ∈ E, hence

Dg(x)∗[w] = [〈∂i g(x), w〉]i∈{1,...,n},

for every w ∈ E and, if E = R
m then Dg(x)∗ = Dg(x)	. Similarly, we define the action of

the linear mapping D2g(x)∗[·] : E → R
n×n by

D2g(x)∗[w] .= [〈∂i∂ j g(x), w〉]i, j∈{1,...,n},

for every w ∈ E.
The orthogonal projection of w ∈ E onto K is the point �K(w) ∈ K such that

||w − �K(w)|| = min{||w − z|| : z ∈ K}.
Note that �K(w) is well-defined as a convex function of w since K is closed and convex.
Also, a very useful fact is that every w ∈ E can be written as

w = �K(w) − �K(−w),
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with 〈�K(w),�K(−w)〉 = 0. This is commonly called the Moreau’s decomposition of w

and one of its many consequences is that w ∈ K if, and only if, �K(−w) = 0. Hence, the
function

�(x)
.= 1

2

(||h(x)||22 + ||�K(−g(x))||2)

can be used as a measure of violation of the constraints of (NCP), that is, a measure of
infeasibility. A result by Fitzpatrick and Phelps [35, Thm. 2.2] can be employed to derive an
expression for the gradient of � at x :

Theorem 1 For every x ∈ R
n, we have

∇�(x) = Dh(x)	h(x) − Dg(x)∗[�K(−g(x))].
Also, we observe that ∇� is a Lipschitz function, but it is not differentiable everywhere.

In our analyses, we make use of its second derivative, which must be taken in the nonsmooth
sense.

2.1 Some Elements of Nonsmooth Analysis

Let X and Y be finite-dimensional normed linear spaces over R. Let F : X → Y be a locally
Lipschitz function and denote the set in which it is differentiable by D(F). The so-called
B-subdifferential of F at a point x ∈ X , is the set of all limiting derivatives of F at x , denoted
by

∂B F(x)
.=
{
V ∈ L(X , Y ) : ∃{xk}k∈N ⊂ D(F), xk → x, DF(xk) → V

}
,

whereL(X , Y )denotes the set of all linearmappings from X toY , and similarly to the previous
section, DF(xk) ∈ L(X , Y ) denotes the first derivative of F at xk , for every xk ∈ D(F).
Evidently, for every x , the set ∂B F(x) is compact, and it is a singleton when x ∈ D(F), but
it is not convex in general. Then, we also define the Clarke subdifferential of F at x , denoted
by ∂F(x), as the convex hull of ∂B F(x), that is,

∂F(x)
.= Conv(∂B F(x)).

In particular, when X = R
n and Y = R, the generalized Hessian of F at x is defined as

∂2F(x)
.= ∂∇F(x),

which is the convex hull of the set of all limiting Hessian matrices of F at x . Following
Hiriart-Urruty et al. [46], the second-order necessary optimality condition for unconstrained
minimizers of F when it is differentiable, is the following:

Theorem 2 If x� is a local minimizer of a differentiable function F : Rn → R such that ∇F
is locally Lipschitz, then ∇F(x�) = 0, and for each d ∈ R

n, there exists some M ∈ ∂2F(x�)

such that d	Md � 0. In other words,

lim sup
d∈Rn

d	∂2F(x�)d � 0.

We refer to [46, Thm. 3.1] for a proof. As observed by Hiriart-Urruty et al., it is not true
that d	Md � 0 for all M ∈ ∂2F(x�), in general, and not even this holds for some fixed M
and all d . We employ this result to analyse the second derivative of�, which is a nonsmooth-
smooth composition, so a chain rule is also required. There are several different extensions
of the chain rule for subdifferentials, but the following result, by Páles and Zeidan [61], is
enough for our purposes:
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Theorem 3 Fix some x ∈ X and let G : X → Y and F : Y → Y be functions such that G
is continuously differentiable at x, and F is Lipschitz in a neighborhood of G(x). Then, we
have

∂(F ◦ G)(x) ⊆ ∂F(G(x)) ◦ DG(x),

where ∂F(G(x)) ◦ DG(x)
.= {V ◦ DG(x) : V ∈ ∂F(G(x))}.

Proof The result follows from [61, Thm. 5.1] since it was originally proved for Banach spaces
that satisfy the Radon-Nikodým property, which holds for every reflexive space, and every
finite-dimensional space with a norm is reflexive.

Specificities about the subdifferential of the orthogonal projection onto the second-order
and the semidefinite cone will be given in their respective sections.

2.2 Necessary Optimality Conditions and Constraint Qualifications

A constraint qualification (CQ) is any assumption over the constraints at a feasible point
x , that implies that the feasible set is similar to its first-order approximation around x . For
instance, one of the most relevant ones is Robinson’s CQ [65], that holds at a feasible point
x when Dh(x) has full row rank and there exists some d ∈ R

n such that1

g(x) + Dg(x)[d] ∈ int(K)

and
Dh(x)d = 0.

It is widely known that Robinson’s CQ is a generalization of the classical Mangasarian-
Fromovitz constraint qualification (MFCQ) from NLP. Such regularity condition allows one
to study the optimality of a point in terms of the first-order approximation of the problem
around it, that is, it is possible to prove that for every local solution x� of (NCP) that satisfies
Robinson’s CQ, there exists some ω� ∈ K and some μ� ∈ R

p such that

∇x L(x�, ω�, μ�) = 0, (1)

and
〈g(x�), ω�〉 = 0, (2)

where
L(x, ω, μ)

.= f (x) − 〈g(x), ω〉 + 〈h(x), μ〉
is the Lagrangian function of (NCP) and

∇x L(x, ω, μ)
.= ∇ f (x) − Dg(x)∗[ω] + Dh(x)	μ

is the gradient of L(x, ω, μ) with respect to x . Equations (1) and (2) compose the so-called
Karush-Kuhn-Tucker (KKT) conditions and, in this context, ω� and μ� are Lagrange multi-
pliers associated with x�. Points that satisfy the KKT conditions are often called first-order
stationary or KKT points. Condition (2) is often called complementarity, and when addition-
ally −ω� belongs to the relative interior of TK(g(x�))o, where

TK(g(x�))
.=
{

d ∈ E : ∃{dk}k∈N → d, ∃{αk}k∈N → 0,
∀k ∈ N, αk > 0, g(x�) + αkdk ∈ K

}

1 We use this characterization of Robinson’s CQ as a definition because K is assumed to be self-dual, and
consequently, to have nonempty interior.
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is the (Bouligand) tangent cone toK at g(x�), we say that strict complementarity holds at the
pair (x�, ω�) [29, Def. 4.74]. A relevant implication of Robinson’s CQ is the boundedness
of the set M(x�) of all Lagrange multipliers associated with a local solution x�.

Second-order optimality conditions give extra information over the set of directions where
first-order information is not meaningful. That is, we are interested in the set

C(x�)
.= {d ∈ R

n : 〈∇ f (x�), d〉 = 0, Dh(x�)	d = 0, Dg(x�)[d] ∈ TK(g(x�))},
which is the critical cone of (NCP) at x�. If Robinson’s CQ holds at a local minimizer x�

of (NCP), then besides KKT, it also satisfies the basic second-order necessary condition
(BSOC), that is, for every d ∈ C(x�) there are Lagrange multipliers ω�

d ∈ K and μ�
d ∈ R

p

such that (1), (2), and

d	(∇2
x L(x�, ω�

d , μ
�
d) + σ(x�, ω�

d))d � 0 (3)

hold, where

∇2
x L(x, ω, μ)

.= ∇2 f (x) − D2g(x)∗[ω] +
p∑

i=1

μi∇2hi (x)

and σ(x, ω) is the so-called “sigma-term”, as presented by Cominetti [31, Thm. 4.1]. In
that paper, the author builds second-order conditions for (NCP) based on the second-order
tangent set of K at g(x) along Dg(x)[d], that may be denoted by T 2

K(g(x), Dg(x)[d]), and
then establishes a “dual form” for it using the support function of T 2

K(g(x), Dg(x)[d]), which
is precisely the sigma-term. Hence, the sigma-term represents a possible curvature of K at
g(x), to some extent, and it can be proved that σ(x, ω) = 0 whenK is polyhedral, such as in
NLP (for details, see [31]). In fact, the difficulty of second-order analysis in contexts more
general than NLP lies almost entirely on the characterization of the sigma-term, which can
be a very challenging task.

One of the major practical drawbacks of BSOC is that in order to verify whether it holds
or not at a given point x , one must know the whole set M(x), which is not always possible.
The stronger optimality condition where inequality (3) holds for every d ∈ C(x�), for some
pair of multipliers (ω�, μ�) (not depending on d), which is sometimes called the semi-strong
necessary optimality condition, does not present such a drawback. However, deciding the
positivity of a matrix over a cone is an NP-hard class problem [60], and so is checking the
semi-strong condition.

A more practical alternative to BSOC and the semi-strong condition is the so-called weak
second-order necessary condition (WSOC), which is defined as follows:

Definition 1 Let x� be a KKT point associated with some Lagrange multipliers ω� ∈ K and
μ� ∈ R

p . We say that WSOC holds at x� when

d	(∇2
x L(x�, ω�, μ�) + σ(x�, ω�))d � 0, (4)

for every d ∈ S(x�)
.= lin(C(x�)), which is the largest subspace contained in C(x�).

Note that in Definition 1 we only take directions in the subspace S(x�), called the critical
subspace of (NCP) at x�, which coincides with C(x�) under strict complementarity2. At first

2 We will give a short proof for the fact C(x�) = lin(C(x�)) under strict complementarity, for com-
pleteness: Let d ∈ C(x�) and suppose that there exists a Lagrange multiplier −ω� in the relative
interior of TK(g(x�))o. Note that 〈∇ f (x�), d〉 = 〈ω�, Dg(x�)[d]〉 = 0 by the KKT conditions. Hence,
−ω� ∈ TK(g(x�))o ∩ {Dg(x�)[d]}⊥, which implies TK(g(x�))o ⊆ {Dg(x�)[d]}⊥ and, consequently,
span(Dg(x�)[d]) ⊆ TK(g(x�)). Then, Dg(x�)[d] ∈ lin(TK(g(x�))), so d ∈ lin(C(x�)).
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sight, a second-order condition that only covers S(x�) instead of the whole C(x�) may seem
disadvantageous in comparison with the semi-strong condition. In fact, the semi-strong con-
dition impliesWSOC. However, there are strong evidences that suggest that it is unlikely that
BSOC or the semi-strong condition can be used to support the global convergence theory of
any practical algorithm, unless C(x�) = S(x�). In fact, for the particular case of NLP, Gould
and Toint [41] presented a simple counterexample, with a quadratic objective function and a
constraint of the form x � 0, for which a large class of barrier-type methods may produce an
output sequence whose limit points fail to satisfy both BSOC and the semi-strong condition,
even when every iterate of such sequence satisfies the second-order sufficient condition for
its respective penalized problem. Later, Andreani and Secchin [18] made a small modifi-
cation in Gould and Toint’s counterexample to obtain the same conclusion for augmented
Lagrangian-type algorithms. WSOC, on the other hand, is guaranteed to be fulfilled under
weak assumptions for some variants of the two methods we mentioned above [2, 59], and
also for a regularized SQP method for NLP [40]. The negative conclusions regarding BSOC
and the semi-strong condition have led some authors to doubt the existence of an algorithm
that could be associated with a second-order condition that takes the whole critical cone
into consideration. Following this discussion, Andreani et al. [13] managed to characterize
the weakest second-order constraint qualification that could guarantee the fulfilment of the
semi-strong condition at the limit points of a large class of penalization-type algorithms that
encompasses, for instance, all the aforementioned ones. However, such a constraint qualifi-
cation was proven not to imply nor to be implied by LICQ [13, Ex. 4.5 and 4.6], and to be
violated even for box constraints.

Despite the good algorithmic advantages of WSOC, Robinson’s CQ alone is not enough
to guarantee its fulfilment at local minimizers – see, for instance, the counterexample by
Baccari [21, Section 3] or the discussion in [22]. Instead, the existing results on WSOC
usually require a stronger CQ called nondegeneracy (or transversality), which holds at a
feasible point x when

E × R
p = (lin(TK(g(x))) + Im(Dg(x))) × Im(Dh(x)). (5)

It was translated from differential equations to optimization by Shapiro and Fan [68] and
it is well-known that, for every nondegenerate solution x� of (NCP), the set M(x�) is a
singleton, what resembles the effects of LICQ in NLP. Thus, nondegeneracy is analogous to
LICQ, in this sense.

Theorem 4 If x� is a local minimizer of (NCP) that satisfies nondegeneracy, then the KKT
conditions hold at x� for some Lagrange multipliers ω� ∈ K and μ� ∈ R

p and, moreover,
WSOC holds with respect to these multipliers.

Note that Theorem 4 is simply a rephrasing of the necessity of BSOC after assuming
uniqueness of theLagrangemultiplier (nondegeneracy), butwe stated it as it is for comparison
purposes since our main results consist of proving of Theorem 4 under less demanding
conditions.

In the context of NLP, Andreani, Martínez, and Schuverdt [16] were able to prove Theorem 4
replacing nondegeneracy (LICQ) with onlyMFCQ together with the so-calledweak constant
rank (WCR) property, which holds at a feasible point x� when there exists a neighborhood
N of x� such that

{∇gi (x)}i : gi (x�)=0 ∪ {∇h j (x)} j∈{1,...,p} (6)

has the same rank for every x ∈ N . It isworthmentioning thatWCR is not aCQon its own [16,
Ex. 5.1] and that the joint condition “MFCQ+WCR” was proven to be strictly weaker than
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LICQ [16, Ex. 5.2]. Later, a simpler proof of this result was presented by Andreani et al. [13,
Crlr. 4.3 and Thm. 4.1], using sequential optimality conditions. In the following sections, we
generalize theWCR property and the result of [16] for NSOCP and NSDP, using an approach
similar to [13].

As a matter of fact, Andreani, Echagüe, and Schuverdt [3] presented a result similar to
Theorem 4, but under Janin’s constant rank constraint qualification (CRCQ) [47], which is
also weaker than LICQ and independent of “MFCQ+WCR”. However, extending constant
rank-type CQs to conic contexts is not easy, and finding an extension that preserves all
of its interesting properties is even more difficult. In fact, there is a series of papers by
Andreani et al. [8, 10–12] presenting distinct extensions of CRCQ for NSDP and NSOCP
that suit distinct applications. For instance, [10, 12] deal with convergence of algorithms
to first-order stationary points but no second-order properties were proven, whereas [11]
presents a more geometric approach with some interesting theoretical properties but no
application towards algorithms was provided. We should mention, nevertheless, that the
extension of WCR presented this paper is not a particular case of any of the conditions from
the aforementioned papers.

3 Second-order Cone Programming

The standard NSOCP problem can be seen as a particular case of (NCP) where E = R
m

and K .= K1 × · · · × Kr is a Cartesian product of Lorentz cones, that is, Ki
.= L

mi for all
i ∈ {1, . . . , r}, where m1 + · · · + mr = m and Ki ⊂ R

mi . In this section, we consider Rm

with its standard inner product and the Euclidean norm. The notation w = (w0, w̄) refers to
a partition of w ∈ R

mi where w0 ∈ R is its first entry and w̄ ∈ R
mi−1 is the subvector with

the remaining entries. To make the NSOCP problem explicit, define g
.= (g1, . . . , gr ) with

gi : Rn → R
mi for every i ∈ {1, . . . , r}, and obtain

Minimize
x∈Rn

f (x),

subject to gi (x) ∈ Ki ,∀i ∈ {1, . . . , r}
h(x) = 0.

(NSOCP)

As usual in the study of (NSOCP), given a feasible point x , we define the following sets
of indices, which constitute a partition of {1, . . . , r}:

I0(x)
.= {i ∈ {1, . . . , r} : gi (x) = 0},

IB(x)
.= {i ∈ {1, . . . , r} : gi (x) ∈ bd+(Ki )},

II (x)
.= {i ∈ {1, . . . , r} : gi (x) ∈ int(Ki )}.

(7)

Moreover, when we are dealing with a KKT point x� associated with Lagrangemultipliers
ω� ∈ K and μ� ∈ R

p , we consider the subset of IB(x�) given by

IBB(x�, ω�)
.= {i ∈ IB(x�) : ω�

i ∈ bd+(Ki )}
and the critical subspace of (NSOCP) at x� can bewritten in terms of such indices, as follows:

S(x�) =
{

d ∈ R
n : Dh(x�)d = 0; Dgi (x�)d = 0, i ∈ I0(x�);

gi (x�)		i Dgi (x�)d = 0, i ∈ IB(x�)

}

, (8)
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where

	i
.=
[
1 0	
0 −Imi−1

]

∈ R
mi×mi for all i ∈ {1, . . . , r}. (9)

The sigma-term at x�, when specialized to (NSOCP), can be written as

σ(x�, ω�) =
∑

i∈IBB (x�,ω�)

σi (x
�, ω�),

where

σi (x
�, ω�) = − [ω�

i ]0
[gi (x�)]0 Dgi (x

�)		i Dgi (x
�), for all i ∈ IBB(x�, ω�). (10)

We refer to [38] for details.
Also, the specialized characterization of the nondegeneracy condition in NSOCP, follow-

ing Bonnans and Ramírez [28, Prop. 19], can be written as follows:

Proposition 5 Let x� ∈ R
n be a feasible point of (NSOCP). The nondegeneracy condition

holds at x� if, and only if, the set

{∇hi (x
�)
}
i∈{1,...,p}

⋃{∇gi j (x
�)
}

i∈I0(x�)
j∈{1,...,mi }

⋃{
Dgi (x

�)		i g̃i (x
�)
}
i∈IB (x�)

(11)

is linearly independent, where ∇gi j (x) denotes the transpose of the j-th row of Dgi (x) and

g̃i (x)
.= (||gi (x)||2, gi (x)). (12)

In [4, Def. 3.3], the authors extend a sequential optimality condition called Approximate-
KKT (AKKT) from NLP [7] to the NSOCP context. In short, AKKT is a punctual necessary
optimality condition that also incorporates a bit of local information. That is, every point x�

that satisfies AKKT (though not necessarily KKT) is accompanied by a sequence {xk}k∈N →
x� such that each xk approximately satisfies the KKT conditions with some approximate
Lagrange multipliers ωk and μk . Since our analyses are based on AKKT, we now recall its
definition and some of its properties.

Definition 2 [AKKT for NSOCP] A feasible point x� of (NSOCP) satisfies the AKKT con-
dition when there exist sequences {xk}k∈N → x�, {ωk}k∈N ⊂ K, and {μk}k∈N ⊂ R

p such
that

∇x L(xk, ωk, μk) → 0 (13)

and
i ∈ II (x

�) ⇒ ωk
i → 0,

i ∈ IB(x�) ⇒ ωk
i → 0 or ωk

i ∈ bd+(Ki ) with
ω̄k
i

||ω̄k
i ||2

→
¯gi (x�)

|| ¯gi (x�)||2
.

(14)

It was proved in [4, Thm. 3.1] that AKKT is indeed a genuine necessary optimality
condition independently ofCQs, in contrastwithKKT.Also, their proof is constructive,which
means it tells us how to obtain the sequences of perturbed KKT points and multipliers. Next,
we state their result with a slightly different phrasing, in order to highlight such construction.
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Theorem 6 Let x� be a local minimizer of (NSOCP). Then, for any given sequence
{ρk}k∈N → +∞, there exists a sequence {xk}k∈N → x�, such that each xk is a local
minimizer of the regularized penalty function

Fk(x)
.= f (x) + 1

4
||x − x�||42 + ρk

2

(
r∑

i=1

||�Ki (−gi (x))||22 + ||h(x)||22
)

.

Also, the multiplier sequences given by ωk
i

.= ρk�Ki (−gi (xk)) for all i ∈ {1, . . . , r} and
μk .= ρkh(xk) satisfy (13) and (14) together with {xk}k∈N. Consequently, x� satisfies AKKT.

A key property of AKKT, as stated in [4, Thm. 3.1], is that the sequences of multipliers
from Definition 2 must be bounded when x� satisfies Robinson’s CQ. Hence, AKKT implies
KKT under Robinson’s CQ. Also, in the same paper the authors present a variant of the
classical Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian method (see [45, 63,
66]) and prove that its output sequences can be fully described by AKKT.

3.1 Second-order Optimality Conditions

Here, we build second-order analysis for (NCP) primarily under Robinson’s CQ instead of
nondegeneracy and strict complementarity, but since Robinson’s CQ alone is not enough to
complete that task [21], we also introduce a generalized version of the WCR property.

Definition 3 (WCR for NSOCP) We say that the weak constant rank property is satisfied at
a feasible point x� of (NSOCP) if there exists a neighborhood N of x� such that the set

{∇hi (x)
}
i∈{1,...,p}

⋃{∇gi j (x)
}

i∈I0(x�)
j∈{1,...,mi }

⋃{
Dgi (x)

		i g̃i (x)
}
i∈IB (x�)

(15)

has the same rank, for all x ∈ N .

In view of the characterization of nondegeneracy for NSOCP provided by Proposition 5,
we see that nondegeneracy implies both Robinson’s CQ and WCR in this context, just as
in the NLP case. On the other hand, [16, Ex. 5.2] exhibits a point that satisfies MFCQ and
WCR, but not LICQ. Hence, the joint condition “Robinson’s CQ+WCR” is strictly weaker
than nondegeneracy.

Themain feature of theWCRproperty inNLP is its effect on the continuity of perturbations
of the critical subspace around a feasible point x�. Next, we prove that this property is
maintained in (NSOCP).

Lemma 1 Let x� ∈ R
n be a feasible point of (NSOCP). Then, the WCR property holds at x�

if, and only if, the set-valued mapping x �→ S(x, x�) is inner semicontinuous at x�, where

S(x, x�)
.=
{

d ∈ R
n : Dh(x)d = 0; ∀i ∈ I0(x�), Dgi (x)d = 0;

∀i ∈ IB(x�), g̃i (x)		i Dgi (x)d = 0

}

, (16)

and g̃i is defined in (12).

Proof Following the steps of the proof of [43, Prop. 2], we see that [20, Thm. 1.1.8] tells
us that x �→ S(x, x�) is inner semicontinuous at x� if, and only if, the set-valued mapping
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x �→ S(x, x�)o is outer semicontinuous at x�, where S(x, x�)o
.= −S(x, x�)∗ denotes the

polar of S(x, x�). Since in this case we have

S(x, x�)o =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

i∈I0(x�)

Dgi (x)
	ai +

p∑

i=1

∇hi (x)bi+

+
∑

i∈IB (x�)

Dgi (x)
		i g̃i (x)ci

: ai ∈ R
mi , bi , ci ∈ R

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

the result follows directly from [32, Prop. 3.2.9].

As in NLP, the subspace S(x, x�) may be called perturbed critical subspace of (NSOCP)
at x , around x�. The last ingredient we need for the main theorem of this section is an explicit
characterization of the subdifferential of the projection onto Ki . In order to present that, for
each i ∈ {1, . . . , r}, let Mi : R × R

mi−1 → R
mi×mi be defined as

Mi (ξ, w)
.= 1

2

[
1 w	
w (1 + ξ)Imi−1 − ξww	

]

and observe that the matrix Mi (ξ, u) is symmetric positive semidefinite whenever |ξ | ≤ 1
and ||w||2 = 1 [51, Lem. 2.8].

The following lemma, that can be found in [62, Lem. 14] and [44, Prop. 4.8], provides a
description of the B-subdifferential of the projection onto Ki , in terms of Mi (ξ, w).

Lemma 2 The B-subdifferential ∂B�Ki (z) of the orthogonal projection onto Ki at z ∈ R
mi

is given as follows:

(a) If z ∈ int(−Ki ), then ∂B�Ki (z) = {
0
}
;

(b) If z ∈ int(Ki ), then ∂B�Ki (z) = {
Imi

}
;

(c) If z /∈ Ki ∪ (−Ki ), then ∂B�Ki (z) =
{

Mi

(
z0

||z̄||2 ,
z̄

||z̄||2
)}

;

(d) If z ∈ bd+(Ki ), then ∂B�Ki (z) =
{

Imi , Mi

(

1,
z̄

||z̄||2
)}

;

(e) If z ∈ bd+(−Ki ), then ∂B�Ki (z) =
{

0, Mi

(

−1,
z̄

||z̄||2
)}

;

(f) If z = 0, then ∂B�Ki (z) = {0, Imi } ∪ {Mi (ξ, w) : |ξ | ≤ 1, ||w||2 = 1}.

To the best of our knowledge, the first specialized study on second-order necessary con-
ditions for (NSOCP) is credited to Bonnans and Ramírez [28, Thm. 30], where they assume
nondegeneracy and the so-called second-order growth condition (or uniform growth con-
dition). Fukuda and Fukushima [38, Thm. 4.5] also developed second-order conditions via
squared slack variables, under nondegeneracy and strict complementarity. Our contribution
to this discussion is to draw attention to the fact that the nondegeneracy assumption can be
strictly weakened and that strict complementarity is not necessary when consideringWSOC,
which is also the main result of this section.

Theorem 7 Let x� be a local minimizer of (NSOCP) satisfying Robinson’s CQ and the WCR
property. Then, there are some Lagrange multipliers ω� ∈ K andμ� ∈ R

p such that the KKT
conditions and WSOC hold.
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Proof Let x� be a localminimizer of (NSOCP).Then, byTheorem6, for anygiven {ρk}k∈N →
+∞, there exists a sequence {xk}k∈N → x� such that xk is a local minimizer of Fk(x) for
each k, where

Fk(x) = f (x) + 1

4
||x − x�||42 + ρk

2

(
r∑

i=1

||�Ki (−gi (x))||22 + ||h(x)||22
)

.

From the local optimality of xk , we obtain

∇Fk(x
k) = ∇ f (xk) + ||xk − x�||22(xk − x�)

−
r∑

i=1

Dgi (x
k)	ρk�Ki (−gi (x

k)) + ρk Dh(xk)	h(xk) = 0

and by Theorem 2, for every d ∈ R
n and every i ∈ {1, . . . , r}, there exists some χk

i ∈
∂(�Ki ◦ −gi )(xk) such that d	∇2Fk(xk)d � 0, where we denote by ∇2Fk(xk) the element
of the generalized Hessian of Fk at xk that is defined in terms of χk

i , by an abuse of notation.
That is,

∇2Fk(x
k)

.= ∇2 f (xk) + ||xk − x�||22 In + 2(xk − x�)(xk − x�)	

−
r∑

i=1

( mi∑

j=1

(ρk�Ki (−gi (x
k))) j∇2gi j (x

k) − ρk Dgi (x
k)	χk

i

)

+
p∑

j=1

(
ρkh j (x

k)∇2h j (x
k) + ρk∇h j (x

k)∇h j (x
k)	
)

.

Following Theorem 6, we define ωk
i

.= ρk�Ki (−gi (xk)) for all i ∈ {1, . . . , r}, and
μk .= ρkh(xk) for every k ∈ N, which satisfy (13). Also, it follows from Theorem 3 that
there exists some V k

i ∈ ∂�Ki (−gi (xk)) such that

χk
i = V k

i ◦ −Dgi (x
k) = −V k

i Dgi (x
k),

where ◦ denotes a composition of linear operators. Hence, the expression d	∇2Fk(xk)d � 0
can be rewritten as

d	
(

∇2
x L(xk, ωk, μk) + ρk

r∑

i=1

Dgi (x
k)	V k

i Dgi (x
k)

+ ρk

p∑

j=1

∇h j (x
k)∇h j (x

k)	
)

d � −d	
kd, (17)

where 
k .= ||xk − x�||22In + 2(xk − x�)(xk − x�)	 → 0.
Under Robinson’s CQ, the sequence {(ωk, μk)}k∈N is bounded (see the proof of [4, Thm.

3.3]). Then, for every limit point (ω�, μ�) of {(ωk, μk)}k∈N, note that x� satisfies the KKT
conditions. Without loss of generality, we assume {(ωk, μk)}k∈N → (ω�, μ�). Now, from
WCR and Lemma 1, we know that the mapping x �→ S(x, x�) as in (16) is inner semi-
continuous at x�, then for each d ∈ S(x�) there exists a sequence {dk}k∈N → d such that
dk ∈ S(xk, x�) for all k ∈ N.

For each i ∈ {1, . . . , r}, define
uki =

(
[uki ]0, uki

)
.= Dgi (x

k)dk .
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Our next step is to compute ρk(uki )
	V k

i u
k
i and its limit points in three independent cases:

1. If i ∈ II (x�), we have gi (xk) ∈ int(Ki ) for all k sufficiently large. Then, from Lemma 2
item (a), V k

i = 0 and ρk(uki )
	V k

i u
k
i = 0 for such k;

2. If i ∈ I0(x�), recalling that dk ∈ S(xk, x�), we have uki = 0 for all k ∈ N, which means
ρk(uki )

	V k
i u

k
i = 0 in this case as well;

3. If i ∈ IB(x�), the sequence {gi (xk)}k∈N can be essentially split into three subsequences,
which have distinct influences over ρk(uki )

	V k
i u

k
i . Hence, they are separately analysed

below, where N1, N2, and N3 constitute a partition of N:

(i) {gi (xk)}k∈N1 ⊂ int(Ki ). Here, ωk
i = 0 for every k ∈ N1. Also, by item (a) of

Lemma 2, V k
i = 0 and ρk(uki )

	V k
i u

k
i = 0 for every k ∈ N1;

(ii) {gi (xk)}k∈N2 ⊂ R
m \ (Ki ∪ −Ki ). From Lemma 2 item (c) we obtain

V k
i = Mi

(

− [gi (xk)]0
||gi (xk)||2

,− gi (xk)

||gi (xk)||2

)

which can be explicitly written as

V k
i = 1

2

⎡

⎢
⎢
⎢
⎢
⎣

1 − gi (xk)
	

||gi (xk)||2
− gi (xk)

||gi (xk)||2
Zk

⎤

⎥
⎥
⎥
⎥
⎦

,

where

Zk .=
(

1 − [gi (xk)]0
||gi (xk)||2

)

Imi−1 +
( [gi (xk)]0

||gi (xk)||2

)
gi (xk) gi (xk)

	

||gi (xk)||22
,

and it is elementary to see that

(uki )
	V k

i u
k
i = 1

2

(

[uki ]20 − 2[uki ]0gi (xk)
	
ūki

||gi (xk)||2
+
(

1 − [gi (xk)]0
||gi (xk)||2

)

||ūki ||22

+[gi (xk)]0(gi (xk)	ūki )2
||gi (xk)||32

)

.

Also, since dk ∈ S(xk, x�) and i ∈ IB(x�) we have g̃i (xk)		i uki = 0, or equiv-

alently, gi (xk)
	
ūki = ||gi (xk)||2[uki ]0. Replacing this in the above expression, we

obtain:

(uki )
	V k

i u
k
i

= 1

2

(

[uki ]20 − 2[uki ]20 +
(

1 − [gi (xk)]0
||gi (xk)||2

)

||ūki ||22 + [uki ]20[gi (xk)]0
||gi (xk)||2

)

= −1

2

(

1 − [gi (xk)]0
||gi (xk)||2

)
(
[uki ]20 − ||ūki ||22

)
. (18)
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It follows from our specific choice of approximate multiplier that

ωk
i = ρk�Ki (−gi (x

k)) = ρk
||gi (xk)||2 − [gi (xk)]0

2

(

1,− gi (xk)

||gi (xk)||2

)

.

Hence, we have
[ωk

i ]0
||gi (xk)||2

= ρk

2

(

1 − [gi (xk)]0
||gi (xk)||2

)

and from (18), we obtain

ρk(u
k
i )

	V k
i u

k
i = − [ωk

i ]0
||gi (xk)||2

(
[uki ]20 −||ūki ||22

)
= − [ωk

i ]0
||gi (xk)||2

(uki )
		i u

k
i . (19)

(iii) {gi (xk)}k∈N3 ⊂ bd+(Ki ). For every k ∈ N3, we have ωk
i = 0. Also, for all such k,

Lemma 2 item (e) implies

V k
i = τMi

(

−1,− gi (xk)

||gi (xk)||2

)

,

for some τ ∈ [0, 1]. Then, note that

Mi

(

−1,− gi (xk)

||gi (xk)||2

)

= Mi

(

− [gi (xk)]0
||gi (xk)||2

,− gi (xk)

||gi (xk)||2

)

,

whichmeans that simplymultiplying (19) by τ is enough to obtain ρk(uki )
	V k

i u
k
i =

0 as well, since [ωk
i ]0 = 0.

Considering exclusively any infinite subsequence indexed by N1, N2, or N3, based on our
previous analyses we observe that, for k sufficiently large, (17) implies

lim inf
k→∞ (dk)	

(

∇2
x L(xk, ωk, μk) −

∑

i∈IB (x�)

[ωk
i ]0

||gi (xk)||2
Dgi (x

k)		i Dgi (x
k)

)

dk ≥ 0.

Since xk → x�, ωk → ω�, μk → μ�, dk → d ∈ S(x�) and ||gi (xk)||2 → ||gi (x�)||2 =
[gi (x�)]0 when i ∈ IB(x�), we conclude that

d	
(

∇2
x L(x�, ω�, μ�) +

∑

i∈IBB (x�)

σi (x
�, ω�)

)

d ≥ 0 for all d ∈ S(x�),

where σi (x�, ω�) is defined as in (10). Therefore, x� satisfies WSOC.

Note that Theorem 7 contains a proof for the fact that every feasible limit point of any
sequence {xk}k∈N generated by an external penalty method must satisfy WSOC if it satisfies
Robinson’s CQ and WCR. Moreover, with minor adaptations, it is possible to prove that the
sameholds for every feasible limit point of amodified extension of theaugmentedLagrangian
method for NLP considered in [25]. And finally, we remark that if m1 = . . . = mr = 1, that
is, if (NSOCP) reduces to a NLP problem, then Theorem 7 recovers a result by Andreani
et al. [13, Crlr. 4.2 and Crlr. 4.3] with an alternative proof.
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4 Semidefinite Programming

In this section, Sm is the linear space of all m × m symmetric matrices with real entries,
equipped with the (Frobenius) inner product given by 〈M, N 〉 .= trace(MN ) and the norm
||M ||F .= √〈M, M〉, for every M, N ∈ S

m . We define M�N as the (Hadamard) entry-wise
product between M and N . Also, the cone of all symmetric positive semidefinite matrices
is denoted by S

m+ and � is the partial order induced by it, that is, M � N if, and only if,
M − N ∈ S

m+. Similarly, M � N when M − N ∈ int(Sm+).
Recall that every M ∈ S

m has a spectral decomposition in the form M = U�U	,
where U is an orthogonal matrix whose columns are eigenvectors of M and � =
Diag(λU1 (M), . . . , λUm (M)) is a diagonal matrix whose entries are the eigenvalues of M
respective to the columns of U . It is well-known that the orthogonal projection of M onto
S
m+ under || · ||F is given by

�S
m+(M)

.= UDiag(max{0, λU1 (M)}, . . . ,max{0, λUm (M)})U	.

The specialization of (NCP) to an NSDP is obtained by setting E = S
m and K = S

m+, and
it is often stated in the form

Minimize
x∈Rn

f (x),

subject to g(x) � 0,

h(x) = 0.

(NSDP)

Here, for simplicity, we consider a single conic constraint since it is enough to cover all
major aspects of the problem and the notation would be unnecessarily heavy otherwise. Sim-
ilarly to the NSOCP case, several concepts of general conic programming can be specialized
and explicitly characterized here, for example, the tangent cone to S

m+ at some M ∈ S
m+ can

be written as
TSm+(M) = {E ∈ S

m : V	EV ∈ S
|β|
+ },

where V ∈ R
m×|β| is any matrix with orthonormal columns that form a basis for Ker(M)

and |β| is its dimension (see [67] for details).
Let x be a feasible point of (NSDP). In this section we always consider spectral decom-

positions of g(x) that keep zero and nonzero eigenvalues separated, for example,

g(x) = U

[
� 0
0 0

]

U	,

where S
α � � � 0 and α

.= α(x) is the set of indices of the positive eigenvalues of
g(x). Let β

.= β(x) be the set of indices of the null eigenvalues of g(x) and partition the
columns U with respect to α and β as follows: U

.= [Uα,Uβ ]. For every d ∈ R
n , define

Dg̃(x)[d] .= U	Dg(x)[d]U as a reverse conjugation of Dg(x)[d] around g(x) and set

Dg̃(x)[d] =
[
(Dg̃(x)[d])αα (Dg̃(x)[d])αβ

(Dg̃(x)[d])	αβ (Dg̃(x)[d])ββ

]

as a partition of Dg̃(x)[d]with respect to α and β. Note that sinceU is an orthogonal matrix,
the inner product is invariant to reverse conjugation in terms of U , that is,

〈A, B〉 = trace(AB) = trace(UU	AUU	B) = trace(U	AUU	BU ) = 〈 Ã, B̃〉
for all A, B ∈ S

m .
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The critical cone of (NSDP) at a feasible point x� is given by

C(x�) = {d ∈ R
n : ∇ f (x�)	d = 0, Dh(x�)d = 0, (Dg̃(x�)[d])ββ � 0}.

Under Robinson’s CQ, if x� is a KKT point associated with some Lagrange multipliers
ω� ∈ S

m+ and μ� ∈ R
p that satisfy strict complementarity, then the critical cone becomes

equal to the critical subspace

S(x�) = {d ∈ R
n : Dh(x�)d = 0, (Dg̃(x�)[d])ββ = 0}

since ω̃�
αα = 0 and ∇ f (x�)	d = 〈Dg(x�)[d], ω�〉 − 〈Dh(x�)d, μ�〉 = 0 for every d ∈ R

n .
In [15], Andreani, Haeser, and Viana proposed an extension of the AKKT condition from

NLP to (NSDP) as well. We state it as follows:

Definition 4 [AKKT for NSDP] A feasible point x� of (NSDP) satisfies the AKKT condition
when there are sequences {xk}k∈N → x�, {ωk}k∈N ⊂ S

m+, and {μk}k∈N ⊂ R
p such that

∇x L(xk, ωk, μk) → 0 (20)

and
λUi (g(x�)) > 0 ⇒ λSk

i (ωk) = 0, (21)

for sufficiently large k, where U diagonalizes g(x�), Sk diagonalizes ωk for each k, and
Sk → U .

If x� is a KKT point of (NSDP) associated with multipliers ω� ∈ S
m+ and μ� ∈ R

p , note
that the complementarity condition 〈g(x�), ω�〉 = 0 holds for g(x�), ω� ∈ S

m+ if, and only
if, g(x�)ω� = 0, then it is elementary to check that g(x�) and ω� must be simultaneously
diagonalizable (i.e. they commute) in this case. In light of this, note that Definition 4 relaxes
the commutativity between g(x�) and ω� by requiring Sk → U .

Also in [15], the authors prove that AKKT as in Definition 4 is a necessary optimality
condition, independently of the fulfilment of constraint qualifications. We state it below in
the same form as Theorem 6, with some emphasis on how the sequences that compose it are
generated.

Theorem 8 Let x� be a local minimizer of (NSDP). Then, for any sequence {ρk}k∈N → +∞,
there exists some {xk}k∈N → x�, such that for every k, xk is a local minimizer of the
regularized penalty function

Fk(x)
.= f (x) + 1

4
||x − x�||42 + ρk

2

(
||�S

m+(−g(x))||2F + ||h(x)||22
)

.

Also, the multiplier sequences given by ωk .= ρk�S
m+(−g(xk)) and μk .= ρkh(xk) satisfy

(20) and (21) with {xk}k∈N. Consequently, since ωk and g(xk) are simultaneously diagonal-
izable in this case for every k ∈ N, x� satisfies AKKT.

Under Robinson’s CQ, the sequences {ωk}k∈N and {μk}k∈N are bounded, and also all limit
points of those sequences are Lagrange multipliers associated with x� [15, Thm. 6.1]. That
is, AKKT implies KKT in this case. An augmented Lagrangian algorithm is also presented
in [15] for NSDP, whose global convergence theory is built around AKKT. Such results were
sharpened in [5] and further extended in [6], for the general (NCP).
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4.1 Second-order Analysis

As mentioned before, there are many different works that deal with a specialized second-
order analysis for (NSDP), which mainly differ in the assumptions required for it and the
techniques employed to characterize the sigma-term. As far as we know, the first work on this
topic is due to Shapiro [67, Section 4], who obtained the very useful and practical expression

σ(x�, ω�) = [2〈ω�, ∂i g(x
�)g(x�)†∂ j g(x

�)〉]i, j∈{1,...,n}, (22)

where g(x�)† is the Moore-Penrose pseudoinverse of g(x�). Shapiro’s idea was to write
the semidefinite cone using the second-order directional derivative of the least eigenvalue
function λmin, as follows:

S
m+ = {M ∈ S

m : λmin(M) � 0},
and the expression of the sigma-term comes from the expression of the second-order direc-
tional derivative of λmin. Moreover, his second-order analysis was based on the uniqueness of
the Lagrange multiplier, via nondegeneracy, and strict complementarity (Theorem 4). Then,
Jarre [49, Thm. 2] presented another way of achieving Shapiro’s characterization of the
sigma-term, and consequently an alternative proof for Theorem 4, using a locally equivalent
formulation of (NSDP) based on the Schur complement of g(x�)αα , which turned out to be
a more elementary proof. Later, Lourenço, Fukuda, and Fukushima [57, Props. 5.1 and 5.2],
studied a characterization of the semidefinite cone with squared slack variables

S
m+ = {M ∈ S

m : ∃Z ∈ S
m, M − Z Z = 0},

which induces a reformulation of (NSDP) as a NLP problem. Then, the authors related
the classical second-order conditions for NLP with the second-order conditions for (NSDP)
(with the curvature term), under the same hypotheses as Shapiro and Jarre. Forsgren [36,
Thm. 2], on the other hand, proved that strict complementarity was not needed for WSOC
when assuming a different notion of regularity that treats structural sparsity and also uses
Schur complements. In this section, we use the characterization

S
m+ = {M ∈ S

m : ||�S
m+(−M)||2 = 0},

and the generalized derivative of the orthogonal projection, to obtain second-order results
that do not require uniqueness of multipliers, nor strict complementarity.

Our approach is based on extracting second-order information fromAKKTandTheorem8
andwedo this in a similarmanner of the previous section,whichmeanswebegin by exhibiting
a characterization of the derivative of �S

m+ , then we extend the WCR condition from NLP to
NSDPand, at last,we compute the sigma-termusing the second-order (generalized) derivative
of Fk .

Based on the works of Bonnans et al. [26] and Pang et al. [62], Sun [69] characterized the
B-subdifferential of the projection onto the semidefinite cone. To make a proper reference,
we define the following matrix:

B(λU (M))
.=
[
max{λUi (M), 0} + max{λUj (M), 0}

|λUi (M)| + |λUj (M)|

]

i, j∈{1,...,m}
,

where 0/0 is set as 1 and U is an orthogonal matrix that diagonalizes M . Next, we make
a slightly adapted transcription of a proposition by Qi [64, Prop. 2.5] summarizing Sun’s
result:
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Proposition 9 Suppose that M = U�U	 is the spectral decomposition of M ∈ S
m and

let α, β and γ be the sets of indices of the positive, zero and negative eigenvalues of M,
respectively. Without loss of generality, assume those three blocks are separated and that
U

.= [Uα,Uβ,Uγ ]. Then, for any V ∈ ∂B�S
m+(−M) there exists a V|β| ∈ ∂B�

S
|β|
+

(0) such

that

V [H ] = U

⎡

⎢
⎣

0 0 H̃αγ � B(λU (M))αγ

0 V|β|[H̃ββ ] H̃βγ

H̃	
αγ � B(λU (M))	αγ H̃	

βγ H̃γ γ

⎤

⎥
⎦U	 (23)

for every H ∈ S
m, where H̃

.= U	HU. Conversely, for every V|β| ∈ ∂B�
S

|β|
+

(0), there exists

some V ∈ ∂B�S
m+(−M) such that (23) holds.

Even though we assume the eigenvalues are separated by sign, the ordering inside each
partition is not relevant. Note that Proposition 9 is still true if we replace the B-subdifferential
for the Clarke subdifferential.

Corollary 1 Under the hypotheses of Proposition 9, for any V ∈ ∂�S
m+(−M) there exists a

V|β| ∈ ∂�
S

|β|
+

(0) such that (23) holds. Conversely, for every V|β| ∈ ∂�
S

|β|
+

(0), there exists

some V ∈ ∂�S
m+(−M) such that (23) holds.

Proof Let V ∈ ∂�S
m+(−M). Then, V = ∑s

i=1 ai V
i , for some s ∈ N, some ai � 0,

and some V i ∈ ∂B�S
m+(−M), i ∈ {1, . . . , s}, with ∑s

i=1 ai = 1. This means there are

V i|β| ∈ ∂B�
S

|β|
+

(0), i ∈ {1, . . . , s}, such that (23) holds. Hence, for every H ∈ S
m , we have

V [H ] = ∑s
i=1 ai V

i [H ] and the proof is over, because∑s
i=1 ai V

i|β|[H̃ββ ] ∈ ∂�
S

|β|
+

(0). The

converse is analogous.

In order to study perturbations of the critical subspace around a given point x� via WCR,
let ᾱ and β̄ represent the indices of positive and zero eigenvalues of g(x�), respectively,
regarding the decomposition

g(x�) = UDiag(λU (g(x�)))U	, (24)

whereU
.= [Uᾱ ,Uβ̄ ] is a matrix whose columns are eigenvectors of g(x�) and, in particular,

the columns of Uβ̄ form a basis for Ker(g(x�)). Moreover, we will use a construction from
Bonnans and Shapiro’s book [29, Ex. 3.98 and Ex. 3.140], which will be stated as a lemma
below:

Lemma 3 Let M� ∈ S
m+, set β̄ as the indices of zero eigenvalues of M, and let Uβ̄ be a matrix

with orthonormal columns that spanKer(M�). There exists a neighborhoodN of M� and an
analytic matrix function Uβ̄ : N → R

m×|β̄| such that Uβ̄ (M�) = Uβ̄ and, for every M ∈ N ,
the columns of Uβ̄ (M) form an orthonormal basis for the space spanned by the eigenvectors

associated with the |β̄| smallest eigenvalues of M.

This construction allows us to approximate the critical subspace around x�. Indeed, let
N be the neighborhood of g(x�) and Uβ̄ : N → R

m×|β̄| be the function given by Lemma 3
such that Uβ̄ (g(x�)) = Uβ̄ . Then, for every x close enough to x� so that g(x) ∈ N , consider
the following set:

S(x, x�) = {d ∈ R
n : Uβ̄ (g(x))	Dg(x)[d]Uβ̄ (g(x)) = 0, Dh(x)d = 0},
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which will be called perturbed critical subspace at x , centered at x�.
Extending WCR from NLP to (NSDP) is not a trivial task because the notion of “rank”

of the three-dimensional tensor Dg(x) may have multiple meanings. Fortunately, there is
a useful characterization of nondegeneracy by Shapiro and Fan [68], which provides some
insight on how to talk about rank in NSDP. Next, we make a transcription of this result as
stated in [67, Prop. 6], for completeness.

Proposition 10 Suppose that the dimensionofKer(g(x�)) is |β̄|and letUβ̄

.= [u1, . . . , u|β̄|] ∈
R
m×|β̄| be a matrix whose columns form a basis for Ker(g(x�)). Then, nondegeneracy

holds at a feasible point x� of (NSDP) if, and only if, the set of n-dimensional vectors
{vi j : 1 � i � j � |β̄|} ∪ {∇hi (x�) : i ∈ {1, . . . , p}} is linearly independent, where
vi j

.= [u	
i ∂�g(x�)u j ]�∈{1,...,n}.

Inspired by this characterization, we define WCR as follows:

Definition 5 [WCR for NSDP] Let x� be a feasible point of (NSDP) and let (24) be a spectral
decomposition of g(x�). We say that x� satisfies the weak constant rank (WCR) property
when there exists a neightborhood N of x� such that the set

{v̄i j (x) : 1 � i � j � |β̄|} ∪ {∇hi (x) : i ∈ {1, . . . , p}}
has the same rank for every x ∈ N , where

v̄i j (x)
.= [ūi (x)	∂�g(x)ū j (x)]�∈{1,...,n}

and ū1(x), . . . , ū|β̄|(x) ∈ R
m denote the columns of Uβ̄ (g(x)).

Also, in the following lemma we prove that WCR as in Definition 5 is equivalent to the
inner semicontinuity of the mapping x �→ S(x, x�) at x�.

Lemma 4 A feasible point x� satisfies WCR if, and only if, the set-valued mapping x �→
S(x, x�) is inner semicontinuous at x�.

Proof First, we shall prove that, for every x ∈ R
n ,

S(x, x�) =
{
d ∈ R

n : v̄i j (x)
	d = 0, 1 � i � j � |β̄|; Dh(x)d = 0

}
. (25)

Note that for each � ∈ {1, . . . , n} we have

Uβ̄ (g(x�))	∂�g(x)Uβ̄ (g(x�)) =
⎡

⎢
⎣

ū1(x)	∂�g(x)ū1(x) · · · ū1(x)	∂�g(x)ū|β̄|(x)
...

. . .
...

ū|β̄|(x)	∂�g(x)ū1(x) · · · ū|β̄|(x)	∂�g(x)ū|β̄|(x)

⎤

⎥
⎦ ,

hence, considering that ū j (x)	∂�g(x)ūi (x) = ūi (x)	∂�g(x)ū j (x) = (v̄i j (x))� for every
i, j, �, we obtain

Uβ̄ (g(x�))	Dg(x)[d]Uβ̄ (g(x�)) =
⎡

⎢
⎣

v̄11(x)	d · · · v̄1|β̄|(x)	d
...

. . .
...

v̄1|β̄|(x)	d · · · v̄|β̄||β̄|(x)	d

⎤

⎥
⎦ ,

whence follows (25).
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Now, similarly to theNSOCP case, since ∂�g andUβ̄ are continuous, v̄i j is also continuous,
then a result from Facchinei and Pang [32, Prop. 3.2.9] tells us that WCR is equivalent to the
outer semicontinuity of the mapping x �→ S(x, x�)o at x�, where

S(x, x�)o =
⎧
⎨

⎩

∑

1�i� j�|β̄|
ai j v̄i j (x) +

p∑

i=1

bi∇hi (x) : ai j ∈ R, bi ∈ R

⎫
⎬

⎭

using the characterization in (25). Then, the desired result follows from [20, Thm. 1.1.8],
which states that the inner semicontinuity of a set-valuedmapping at a givenpoint is equivalent
to the outer semicontinuity of its polar at that point.

Clearly, WCR as in Definition 5 is implied by nondegeneracy, in view of Proposition 10.
Also, let us assume for a moment that g(x) is a structurally diagonal matrix constraint whose
diagonal elements are denoted by g1(x), . . . , gm(x), and let x� be such that g(x) ∈ S

m+.
Without loss of generality, let us assume that g1(x�) > . . . > g|ᾱ|(x�) > g|ᾱ|+1(x�) = . . . =
g|ᾱ|+|β̄|(x�) = 0. Then, we can take

Uβ̄ (g(x))
.=
[
0
I|β̄|

]

as a constant function to obtain that v̄i i (x) = ∇gi (x) for every i ∈ {1, . . . , |β̄|} and v̄i j (x) = 0
when i �= j . That is, theWCRcondition as inDefinition5 recovers theNLPdefinitionofWCR
when such NLP constraints are modelled as a single structurally diagonal matrix constraint,
with this choice of Uβ̄ . It is important to keep in mind, however, that even if the constraints
g1(x) � 0, . . . , gm(x) � 0 satisfyLICQat x�, nondegeneracymaynot hold at x�, as observed
by Shapiro in [67, p. 309]. The converse, on the other hand, is true. Now, recall that [16, Ex.
5.2] exhibits an NLP problem with a feasible point that satisfies “MFCQ+WCR”, but not
LICQ, and the above discussion tells us that it can be used again to prove that nondegeneracy
is strictly stronger than “Robinson’s CQ+WCR”. Moreover, nondegeneracy and LICQ are
equivalent when considering multiple unidimensional semidefinite constraints, and so are
Definition 5 and the NLP version of WCR. Furthermore, Forsgren [36, Section 2.3] and
Andreani et al. [9, Def. 3.2] considered regularity notions different from nondegeneracy,
that also recover the standard LICQ in NLP. Thus, in all cases, regardless of modelling, the
example of [16, Ex. 5.2] can be used to conclude that “Robinson’s CQ+WCR” is strictly
weaker than all existing notions of nondegeneracy.

With this in mind, we proceed to the main result of this section:

Theorem 11 If x� is a local minimizer such that Robinson’s CQ and the WCR property hold,
then there are some Lagrangemultipliersω� ∈ S

m+ andμ� ∈ R
p such that theKKT conditions

and WSOC hold for this pair of multipliers.

Proof If x� is a local minimizer of (NSDP), Theorem 8 tells us that for any given {ρk}k∈N →
+∞, there is some sequence {xk}k∈N → x� such that, for every k ∈ N, xk is a localminimizer
of the penalty function

Fk(x) = f (x) + 1

4
||x − x�||42 + ρk

2

(
||�S

m+(−g(x))||2F + ||h(x)||22
)

.

Hence, it satisfies the first-order stationarity condition

∇F(xk) = ∇ f (xk) + ||xk − x�||22(xk − x�) + Dh(xk)	(ρkh(xk))

−Dg(xk)∗[ρk�S
m+(−g(xk))] = 0.
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Setting the approximate multipliers ωk .= ρk�S
m+(−g(xk)) and μk .= ρkh(xk), we obtain

(20) and (21) due to Theorem 8. Also, xk is second-order stationary in the nonsmooth sense
(see Theorem 2), which means that, for each unitary vector d ∈ R

n , there exists some
χk ∈ ∂(�S

m+ ◦ −g)(xk) such that

d	∇2F(xk)d

= d	
(

∇2 f (xk) − D2g(xk)∗[ρk�S
m+(−g(xk))] +

p∑

i=1

μk
i ∇2h(xk)

)

d +

+ ρk(Dh(xk)d)	Dh(xk)d − d	 (Dg(xk)∗
[
ρkχ

k[d]
])

+ d	
kd

� 0

(26)

where 
k .= ||xk − x�||22In + 2(xk − x�)(xk − x�)	 and ∇2F(xk) denotes the element of
∂2Fk(xk) that is defined in terms of χk , as an abuse of notation. By Theorem 3, there exists
some V k ∈ ∂�S

m+(−g(xk)), such that

χk = V k ◦ −Dg(xk),

for every k ∈ N.
Under Robinson’s CQ, the sequences {ωk}k∈N and {μk}k∈N are bounded, so they have

convergent subsequences which we will consider to be themselves from now on, without
loss of generality. Denote their limits by ω� and μ�, respectively. In [15, Thm. 6.1], the
authors also prove that ω� and μ� are Lagrange multipliers associated with x�.

Now, let d ∈ S(x�). By WCR there is a sequence {dk}k∈N → d such that dk ∈ S(xk, x�)

for every k. Rewriting (26) in terms of dk , V k , ωk , and μk , we obtain

(dk)	∇2
x L(xk, ωk, μk)dk + ρk(Dh(xk)dk)	Dh(xk)dk

+ ρk

〈
Dg(xk)[dk], V k

[
Dg(xk)[dk]

]〉
� −δk, (27)

where δk
.= (dk)	
kdk → 0. The following paragraphs prove that (27) implies

d	∇2
x L(x�, ω�, μ�)d + 2

〈
Dg(x�)[d], ω�Dg(x�)[d]g(x�)†

〉
� 0, (28)

which is enough to complete the proof since

2
〈
ω�, Dg(x�)[d]g(x�)†Dg(x�)[d]〉 = d	σ(x�, ω�)d,

for every d ∈ R
n due to (22).

To complete that task, we proceed to analyse the behaviour of the sequence
{ρk〈Dg(xk)[dk], V k[Dg(xk)[dk]]〉}k∈N in distinct cases. In the following paragraphs, we
let α

.= α(xk), β
.= β(xk), and γ

.= γ (xk) be the sets of indices of the positive, zero and
negative eigenvalues of g(xk), respectively, regarding the spectral decomposition

g(xk) = SkDiag(λSk (g(xk)))(Sk)	

with Sk → U . Recall that, by construction, the columns of Uβ̄ (g(xk)) span the eigenspace

associated with the β̄ smallest eigenvalues of g(xk), for all k sufficiently large. Denote the
submatrix of Sk that has the eigenvectors associated with the β̄ smallest eigenvectors of g(xk)
in its columns by Sk

β̄
, and since dk ∈ S(xk, x�), we have (Sk

β̄
)	Dg(xk)[dk]Sk

β̄
= 0 for every

k large enough. We proceed by analysing a few cases:
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1. If g(x�) � 0, then−g(xk) ≺ 0 for k sufficiently large. For such k, sinceγ (xk) = β(xk) =
∅ and α(xk) = {1, . . . ,m}, we obtain and V k[Dg(xk)[dk]] = 0 from Proposition 9,
which implies

ρk〈Dg(xk)[dk], V k[Dg(xk)[dk]]〉 = 0.

Also, note that σ(x�, ω�) = 0 in this case, because 〈g(x�), ω�〉 = 0 implies ω� = 0.
2. If g(x�) = 0, then g(x�)† = 0 and σ(x�, ω�) = 0 as well. On the other hand, note that

〈Dg(xk)[dk], V k[Dg(xk)[dk]]〉 = 〈Dg̃(xk)[dk], (Uk)	V k[Dg(xk)[dk]]Uk〉
= 0,

because β̄ = {1, . . . ,m} and dk ∈ S(xk, x�) implies

Dg̃(xk)[dk] = (Sk)	Dg(xk)[dk]Sk = 0

in this case.
3. If g(x�) � 0, but g(x�) �= 0, assume the diagonalization is taken such that nonzero

eigenvalues are separated from the others and the common zero eigenvalues between
g(x�) and ω� are discriminated, that is,

g(x�) = U

⎡

⎣
� 0 0
0 0 0
0 0 0

⎤

⎦U	 and ω� = U

⎡

⎣
0 0 0
0 0 0
0 0 	

⎤

⎦U	,

where S|ᾱ| � � � 0 and S
|γ̄ | � 	 � 0 are diagonal matrices, κ̄ ∪ γ̄ is a partition of β̄,

and U is orthogonal. Denoting H
.= Dg(x�)[d], since d ∈ S(x�) we get H̃β̄β̄ = 0 and

g(x�)†Hω� = U

⎡

⎣
�−1 0 0
0 0 0
0 0 0

⎤

⎦U	U

⎡

⎣
H̃ᾱᾱ H̃ᾱκ̄ H̃ᾱγ̄

H̃κ̄ ᾱ 0 0
H̃γ̄ ᾱ 0 0

⎤

⎦U	U

⎡

⎣
0 0 0
0 0 0
0 0 	

⎤

⎦U	

= U

⎡

⎣
0 0 �−1 H̃ᾱγ̄ 	

0 0 0
0 0 0

⎤

⎦U	.

Conveniently,

�−1 H̃ᾱγ̄ 	 =
[

λUj (ω�)

λUi (g(x�))
H̃i j

]

i∈α, j∈γ

.= A � H̃ᾱγ̄ , (29)

where R|α|×|γ | � A
.=
[
λUj (ω�)λUi (g(x�))−1

]

i∈α, j∈γ
. Also, note that

〈H , g(x�)†Hω�〉 =
〈

H̃ ,
1

2

⎡

⎣
0 0 A � H̃ᾱγ̄

0 0 0
(A � H̃ᾱγ̄ )	 0 0

⎤

⎦

〉

.

In view of this characterization of the sigma-term over d , its relation with (27) can be
made explicit. Consider the following spectral decomposition of g(xk):

g(xk) = Sk

⎡

⎢
⎢
⎣

�k+ 0 0 0
0 �k− 0 0
0 0 0 0
0 0 0 �k

⎤

⎥
⎥
⎦ (Sk)	, (30)
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where we separate the eigenvalues of g(xk) primarily by their sign and, secondarily, by
their limit points. For instance, �k+ ∈ S

|α+| are the positive ones that converge to �,
while �k− ∈ S

|α−| are the positive ones that converge to zero. The squared block of zeros
in the diagonal of (30) is of dimension β and�k ∈ S

|γ | contains the negative eigenvalues
of g(xk). Also, |α+|+ |α−|+ |β|+ |γ | = m. Recall that Sk simultaneously diagonalizes
g(xk) and ωk , by definition of ωk . In order to simplify the notation, define

Hk .= Dg(xk)[dk]
and

Bk
αγ

.= H̃ k
αγ � B(λSk (−g(xk)))αγ .

Using the characterization of V k provided in (23) from Proposition 9 (and Corollary 1),
we obtain

V k[Hk] = Sk

⎡

⎢
⎢
⎢
⎣

0 0 0 Bk
α+γ

0 0 0 Bk
α−γ

0 0 V|β|[H̃ββ ] H̃ k
βγ

(Bk
α+γ )	 (Bk

α−γ )	 (H̃ k
βγ )	 H̃ k

γ γ

⎤

⎥
⎥
⎥
⎦

(Sk)	.

Since ρk〈Hk, V k[Hk]〉 = 〈H̃ k, ρk
˜V k[Hk]〉, it is fundamental to note that for every

i ∈ α+ and j ∈ γ ,

(
ρkB(λSk (−g(xk)))

)

i j
= ρkλ

Sk
j (−g(xk))

λSk
j (−g(xk)) − λSk

i (−g(xk))
→ λUj (ω�)

λUi (g(x�))
, (31)

because ρkλ
Sk
j (−g(xk)) = λSk

j (ωk) and λSk
j (−g(xk)) → 0. Also, keep in mind that

λSk
i (−g(xk)) = −λSk

i (g(xk)).

The blocks indexed by α−, β, and γ , are all blocks of zeros because if k is large enough,
we must have |α−|+ |β|+ |γ | = β̄ and, on the other hand, since dk ∈ S(xk, x�) we also
have that H̃β̄β̄

.= (Sk
β̄
)	Dg(xk)[dk]Sk

β̄
= 0. Similarly, Dh(xk)dk = 0. Thus

lim
k→∞ ρk〈Hk, V k[Hk]〉 = 2〈H , g(x�)†Hω�〉

and, consequently, (27) implies (28), which means x� satisfies the WSOC with the mul-
tiplier ω�.

In the presence of nondegeneracy, the set of Lagrangemultipliers is a singleton and Theorem 11
recovers the classical result of [67], but even without assuming uniqueness of the Lagrange
multiplier it ensures there will be at least one multiplier satisfying WSOC. Moreover, in
contrast with [49, 57, 67], our proof does not require strict complementarity; but nevertheless,
if it does hold, then the proof of Theorem 11 can be significantly simplified, since in this case
the sequence {g(xk)}k∈N is nonsingular and we can avoid the use of subdifferentials.

5 Conclusion

In this paper, we proved that every local minimizer of a nonlinear semidefinite program or a
nonlinear second-order cone program satisfies the weak second-order necessary optimality
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condition under Robinson’s constraint qualification and the so-called weak constant rank
property (WCR), which was extended from NLP [16]. This joint condition is strictly weaker
than nondegeneracy in NLP, NSOCP, and NSDP. We also stress that we do not assume strict
complementarity, which is common in second-order analyses for conic programming. In
contrast, our second-order necessary condition is based on the lineality space of the critical
cone, and not the critical cone itself. This is consistentwith the algorithmic practice of second-
order algorithms as no algorithm is known to achieve a stronger second-order necessary
optimality condition (see the extended version of [22] for details).

In the context of conic programming, several different approaches are known for obtaining
second-order necessary optimality conditions [28, 31, 36, 38, 49, 57, 67]. We present a novel
approach by extending the existing theory of first-order sequential optimality conditions to the
second-order context. In particular, it is remarkable to see the appearance of the sigma-term
in such a variety of approaches, which contributes to the understanding of this concept.

Our approach has a heavy algorithmic taste, as our proof is based on the construction of
a sequence of approximate solutions of penalized subproblems, very similarly to a sequence
generated by practical algorithms. In particular, a similar first-order approach has recently
led to several improvements of global convergence theory of augmented Lagrangianmethods
in conic contexts [4–6, 15].

Thus, this paper opens the path to the development of second-order algorithms in conic
optimization, which, as far as we know, has not been considered yet in the literature. In
particular, augmented Lagrangian and interior point methods [25, 42] are expected to be well
suited to the techniques we develop here. In this context, the joint condition “Robinson’s
CQ+WCR” is the natural candidate for a condition to guarantee global convergence to a
second-order stationary point.
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